Why is radioactive decay a problem?

Radioactive decay is sometimes cited as a counterexample to the law of causality, but I don’t think there is a problem.  It’s not quantum mechanics that tells you decays happen without cause; it’s quantum mechanics plus some crazy extra assumption (or, as we’ll see, quantum mechanics minus some crazy assumption).

I gather that people are bothered by two things.  1) Lack of an outside agent to trigger the decay.  2) That the decay happens abruptly, and there’s no reason for it to happen now as opposed to later.

Why would one object to the glib answer to #1 that beta decays, for example, are caused by the weak nuclear force?  Mathematically, the reason particles decay is because free particle states are no longer eigenstates of the Hamiltonian once one adds interaction terms, and the interaction Hamiltonian is taken to be a manifestation of the weak force.  One could say that the glib answer is guilty of objectifying a term in an equation and thus violates my “abstractions are not causes” rule.  When I say “weak interaction”, the objection continues, I must really refer to non-virtual W and Z bosons coming in from outside the system, which is not what I mean here.  However, this objection itself rests on an assumption that free particle eigenstates are what are really real, and I think this dubious, precisely because it leaves pieces of the theory with unclear ontological ground.  In fact, I affirm my ignorance; I frame no hypotheses.  I only say that the whole Hamiltonian has some ontological ground(s), and so the drift of the state vector from a pure particle state to some superposition has some cause.  (Not knowing the ultimate actors, one must fall back on philosophical arguments as to whether these actors are altered without cause, whether they are self-“moving”, and whatever else.  The description given by the standard model of particle physics can’t help you with that.)

But what about the arbitrariness of when it happens?  Note that this is only a problem for very strong causality claims, like Leibnitz’ Principle of Sufficient Reason.  Lots of perfectly good theories of causality allow for probabilistic action.  “All x have a cause” doesn’t necessarily mean that everything about how and when the cause operates is predetermined.  (I would think most scholastics would be uncomfortable with a claim of such wholesale determinism.)  In any case, even the strongest causality principle is not threatened by particle decay as actually described by the time dependent perturbation theory of quantum mechanics (from which decay rate calculations come), because this description actually doesn’t have any abruptness or discontinuity in it.  What i\hbar\partial_t |\Psi> = \hat{H}|\Psi> actually gives is a continuous drift.  Now, an experimental apparatus like a geiger counter will of course go off at a discrete time, and how we understand that goes into the contentious matter of the interpretation of quantum mechanics.  When playing the game of “quantum mechanics says”, one should use the one interpretation that does not posit a violation of QM on macroscopic scales:  the many-worlds interpretation.  In this model, the state vector continuously and deterministically diffuses through all possible worlds (driven by the full Hamiltonian with interaction, or rather whatever grounds this).  We are one such world, where the decay is measured at such-and-such particular time, but the full state vector is a combination of this and many other possibilities.  Interference terms between “worlds” are destroyed by a process called “decoherence”, which is actually the effect of a third piece of the Hamiltonian, that due to the background environment (including measuring device), so decoherence is definitely a causal event.  Scholastics are always being accused of believing in “spooky” hidden variables as a way to save their belief in causality, but they could just as well accuse their opponents of believing in “spooky” stochastic hidden variables or “spooky” wavefunction collapse.

7 Responses

  1. When playing the game of “quantum mechanics says”, one should use the one interpretation that does not posit a violation of QM on macroscopic scales: the many-worlds interpretation.

    What violation of QM on a macroscopic scale do you attribute to relational quantum mechanics (an interpretation that doesn’t posit an infinity of parallel universes, but rather elegantly extends the concept of relativistic reference frames to the effect observation has upon states)?

  2. I would like to turn a typical atheist argument around on them on this one. Mind you, I know nothing about any of this. Half of the words in your second paragraph were utter nonsense to me. To me, boson might as well be “thingamajig.” However, in principle, it seems silly to counter a law of rationality with such a poorly understood example. Typically, atheists like to say that asserting God is the cause of anything is a “science stopper” because it supposedly disallows investigation into other possible causes. How much more so would claiming something does not have any cause at all be a “science stopper” then? Just because we do not know the cause for a particular thing does not mean it lacks a cause entirely.

    Just because scientists think they should be able to understand all causes with the instruments and methods does not mean they will succeed. I would rather throw up my hands and say “I don’t know” about what causes a particular phenomena than give up on the idea that contingencies must be caused. This is a principle of reason, not a matter for scientific investigation, so it is not subject to falsification by the scientific method.

  3. I haven’t heard of it, so I can’t say one way or the other. (I’m speaking outside my area of expertise, here. For some reason, there aren’t many internet polemics on branches of physics I am an expert in.)

  4. The many worlds idea is problematic philosophically.

    I tend to think Nathan is correct, that there are qualities of matter which we just can’t see, but exist nonetheless and are causative.

  5. Bonald,
    I wonder if you could comment on Stanley Jaki’s take on the interpretation of QM and in particular his crtiical view of the uncertainity principle and the role of observers in causing wavefunction collapse.

    He wonders if the reality is created by observers, then how come all the observers happen to share a single reality?

    The realist view has been that the things, the objects exist independently of us, the observers, the minds.

    Then, does your understanding of QM clash with the realist view (also expressed by Einstein but Jaki also discusses problems with Einstein’s non-throughgoing realism)

    In Jaki’s view. many-worlds interpretation can not harmonised with realist stance on objects.The uncertainity principle (or standard Heisenberg interpretation therof) allows a certain stealing of matter–it allows creation of matter — the multi-worlds is merely a consequence of this stealing on a cosmic scale.

    His views of dispersed in many places, but you can find them in Means to Message (the chapter on Causality).

    I will post later on the actual excerpts.

  6. […] Also, proving his credentials in quantum mechanics and scholastic philosophy are nearly equal to his deftness in fairy tales, Bonald asks Why is radioactive decay a problem? […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: